1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| import torch from torch import nn from d2l import torch as d2l
batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
'''初始化模型参数'''
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn( num_inputs, num_hiddens, requires_grad=True) * 0.01) b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True)) W2 = nn.Parameter(torch.randn( num_hiddens, num_outputs, requires_grad=True) * 0.01) b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2] '''激活函数''' def relu(X): a = torch.zeros_like(X) return torch.max(X, a) '''模型''' def net(X): X = X.reshape((-1, num_inputs)) H = relu(X@W1 + b1) return (H@W2 + b2) '''损失函数''' loss = nn.CrossEntropyLoss(reduction='none') '''训练'''
num_epochs, lr = 10, 0.1 updater = torch.optim.SGD(params, lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) '''在一些测试数据上应用这个模型''' d2l.predict_ch3(net, test_iter)
|